

Das Stromnetz fit für die Zukunft machen

Green Energy Lab Insight Talk, 6th October 2021, Online

Alfred Einfalt (Siemens), Helfried Brunner (AIT – Austrian Institute of Technology), Wolfgang Prüggler (Moosmoar Energies)

In a Nutshell

- Concept for a 'SOFTprotection' as add-on for protection and control in low and medium voltage grids - widely autonomous support system
- Solutions for how a distribution system operator (DSO) can implement an advanced smart grid protection and control functionality in his technical and organisational framework
- An ICT (Information and Communication Technology) system for automated operation
- Integration into working processes including the human-to-machine interaction

Physical Dimension

ICT Dimension

Process Dimension

Use Cases

COMPLEXITY

degree of

...system interaction ...information required ...intelligence required

ICT Dimension

- Soft Protection Communication Framework
 - Use of a message oriented middleware
 - Data dictionary allows and resolves abstract requests to resources
 - Tailored data and service interface for application module integration
- Soft Protection Information Framework
 - Information model (ontology) for grid topology, equipment and measurements
 - Designed in alignment with IEC 61970 –
 Common Information Model

Physical Dimension

 Utilisation and enhancement of development environments

- Selection of representative grid topologies and prosumer models
- Development and validation of Use Case specific algorithms
- Simulation based tests of functionalities and performance

Process Dimension

- In several online and bilateral meetings, existing processes and interfaces were identified within DSO environments.
- For each Use Case of the PoSyCo project, corresponding roles (also new roles) and workflows (incl. new workflows) were identified.
- Roles and workflows are merged in special Show Cases, which will be analysed in depth (process optimisation and cost-benefit analysis) in the last project period.

Process Dimension

- Optimise the implementation of processes, interfaces and roles within DSO environments by using and extending BIFROST
- Corresponding user stories based on workflow descriptions
- Emulation of a wide range of possible scenarios with corresponding dependencies.
- Scenes represent workflow "sensor roll-out"

Conclusio

- Functionalities and related algorithms alone will not fully prepare grids for the future
- Supporting ICT and communication frameworks need to be provided and integrated in DSOs infrastructure
- New roles need to be established and integrated in DSOs working processes

Dieses Projekt wird aus Mitteln des Klima- und Energiefonds gefördert und im Rahmen des Energieforschungsprogramms 2017 durchgeführt

