BM Retrofit – Entwicklung und Demonstration ganzheitlicher Modernisierungskonzepte für biomasse-basierte Wärmenetze

Demonstrator Kreuzstetten

Konsortialmeeting, 31.01.2024

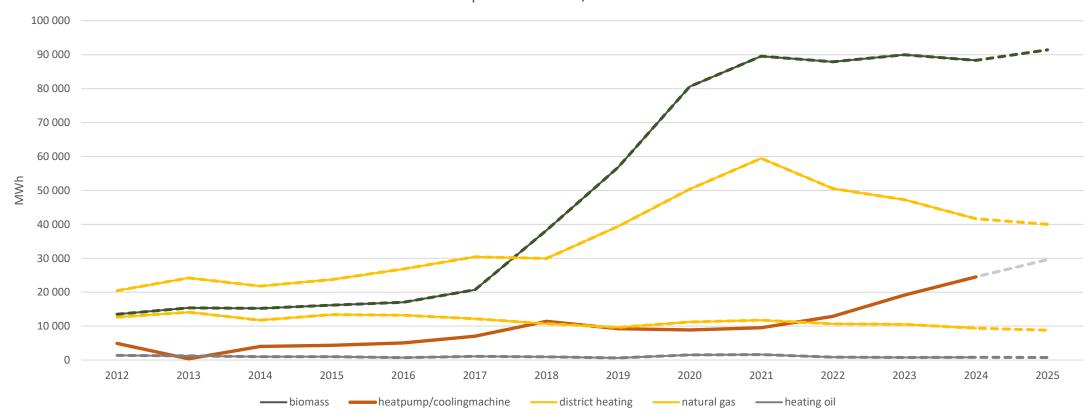
EQUANS Energie GmbH

Spezialist für innovative Energielösungen

- Equans Energie ist der Partner für die Energielieferung und Betriebsführung seit 1998
- Equans Energie entwickelt Energieversorgungskonzepte und setzt diese sicher um von der ersten Analyse und Planung bis hin zum Bau und Betrieb von Heiz- und Kühlanlagen sowie anderen Energiesystemen wie PV und Dampferzeugung.
- Wir übernehmen und erneuern Fernwärmenetze und sorgen für die lokale, nachhaltige und CO2-neutrale Wärmeversorgung.
- Größter privater Versorger für Wärme und Kälte mit 380 Anlagen

Lieferumfang

- Asset-based Wärmeversorgung
- Asset-based Kälteversorgung
- Asset-based Dampferzeugung
- Nahwärme / Fernwärme



EQUANS Energie GmbH

Vorstellung Demonstrator Kreuzstetten

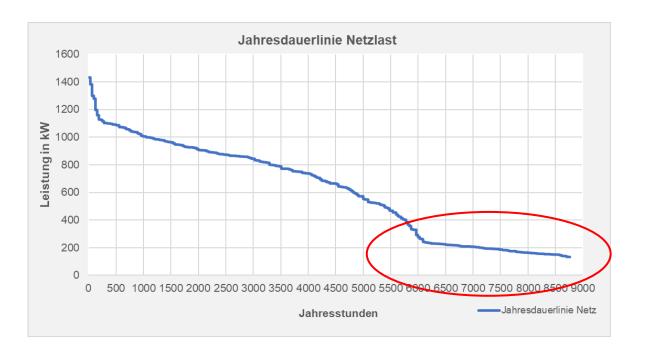
- Aktuelle Situation / kurze Fakten:
 - Biomassenahwärme gegründet 2011
 - Waldhackgut aus der Region
 - Wärmeerzeugung:
 - 2 MWth (2 x 1MWth) Biomasseheizwerk,
 - Gas Spitzenlast nicht mehr vorhanden (Volksschule)
 - PV: 88,5 kWp
 - Netz versorgt ca. 140 Verbraucher
 - Netzlänge 8.700m
 - Wärmebedarf: ~ 5,3 GWh/a

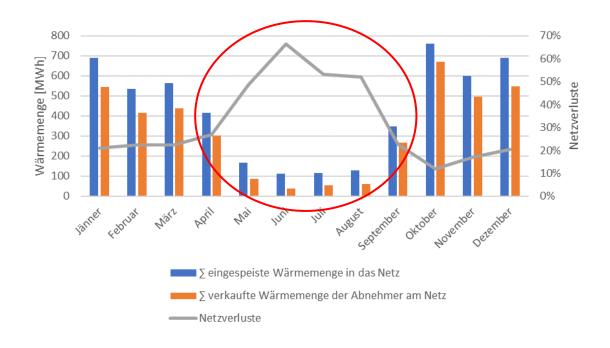
Vorstellung Demonstrator Kreuzstetten

- Wichtigste Herausforderungen:
 - Niedrige Sommerlast mit entsprechend erhöhten Wärmeverlusten
 → Ineffizienter Betrieb des Biomassekessels
 - Zu hohe Systemtemperaturen
 - Flexibilitätsmaßnahmen sind nicht ausreichend in Bezug auf das Speichervolumen sowie die Steuerung des Warmwassersystems bzw. des Biomassekessels

Vorstellung Demonstrator Kreuzstetten

- Highlights und Innovationen:
 - Technische Gesamtoptimierung des Biomasseheizwerks zur Bewältigung der wichtigsten Herausforderungen
 - Netzausbau und -verdichtung in Kombination mit Energieraumplanung
 - Steuerung und Betrieb des gesamten Wärmenetzes insbesondere im Sommer
 - Steuerung und Betrieb eines Großverbrauchers (Trocknungsanlage für landwirtschaftliche Produkte)
 - Untersuchung des Integrationspotenzials von Wärmepumpensystemen
 - Untersuchung des Integrationspotenzials von Adsorptionswärmepumpenanlagen
 - Maßnahmen zur Verbrauchsoptimierung von PV-Anlagen, z.B. Wärmepumpe, P2H, etc.



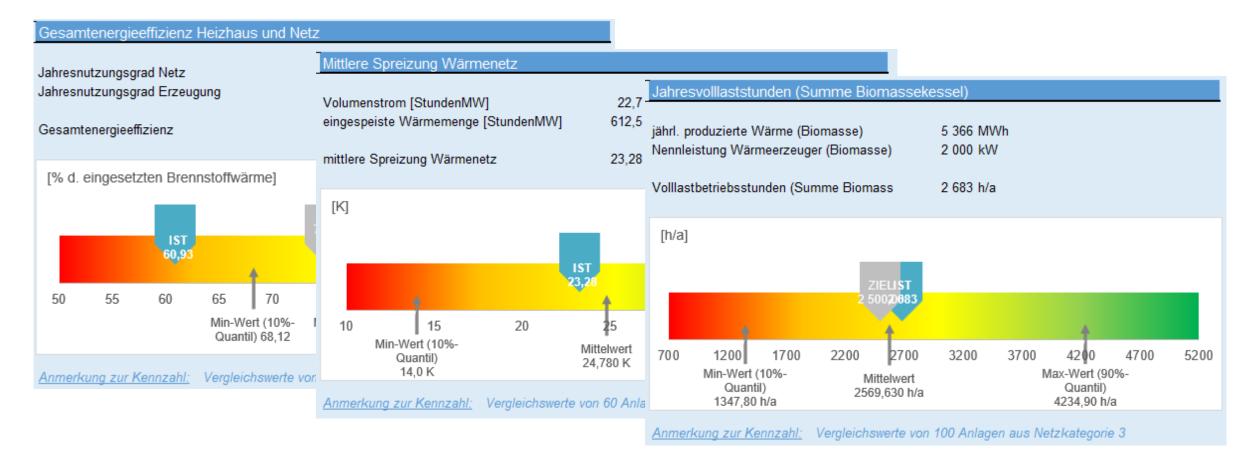


Erstanlagencheck

- Erstanlagencheck Betriebsdaten von Equans
 - Nennleistung: 2 x 1000 kW_{th}

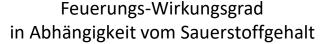
Geringe Sommerlast

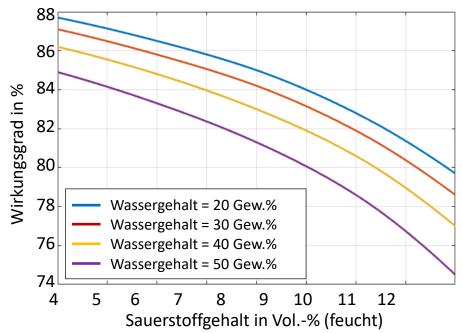
Hohe Netzverluste im Sommer



Erstanlagencheck

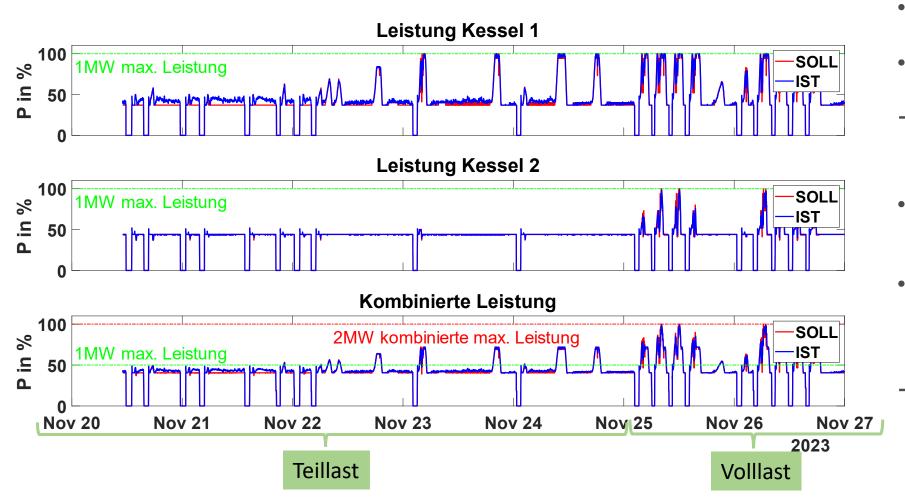
Kennzahlen Check





Analyse des Feuerungsbetriebes - Methode

- Analyse Leistungs- und Puffermanagement
 - Analyse Soll- und Ist-Vorlauftemperaturen
 - Analyse Soll- und Ist-Leistungen
 - →Können Sollwerte umgesetzt werden?
 - →Wie gut werden Kessel eingesetzt? Gut, im Sinne der Verbrennungsqualität.
- Analyse Verbrennungsqualität
 - Analyse Soll- und Ist-Sauerstoffgehalte
 - → Welche Soll-Sauerstoffgehalte werden vorgegeben?
 - → Können Soll-Sauerstoffgehalte erreicht werden?
 - Analyse Feuerraumtemperaturen
 - →Werden ca. 800°C die für einen guten Ausbrand erforderlich sind erreicht?

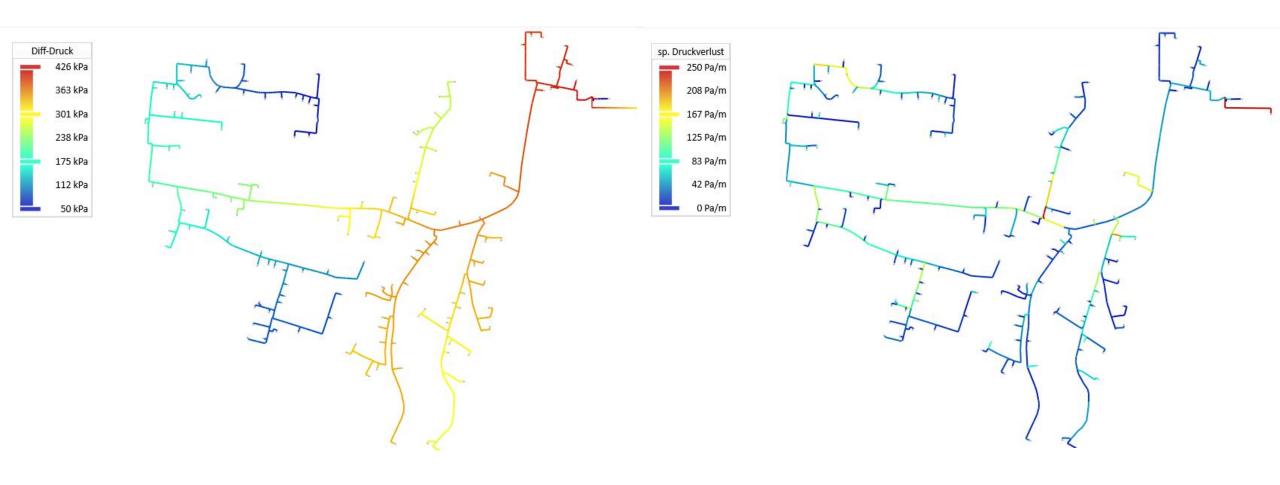


Analyse des Feuerungsbetriebes - Leistungs- und Puffermanagement

- Soll-Vorlauftemperaturen werden stabil gehalten
- Soll-Leistungen werden gut umgesetzt
- → Hohe Modulationsfähigkeit des Kessels
- In Teillast könnte Leistung von 1 Kessel alleine gedeckt werden
- In Volllast schalten Kessel häufig zwischen Abgeschaltet, Minimallast und Nennlast
- →Leistungs- und Puffermanagement sollte angepasst werden

Analyse des Feuerungsbetriebes – Zusammenfassung | Nächste Schritte

- Zusammenfassung
 - → Hohe Modulationsfähigkeit des Kessels
 - → Leistungs- und Puffermanagement sollte angepasst werden (Ursache der schlechten Verbrennungsqualität beheben)
 - → Hohe Sauerstoffgehalte führen zu geringem Wirkungsgrad
 - → Geringe Feuerraumtemperaturen führen zu schlechtem Ausbrand
- Nächste Schritte
 - Variante 1: Verbesserung des regelbasierten Leistungs- und Puffermanagements
 - Variante 2: Erweiterung des regelbasierten Leistungs- und Puffermanagements um Prognosemethoden
 - Variante 3: Entwicklung eines optimierungsbasierten Leistungs- und Puffermanagements (Energiemanagementsystem), um auch zukünftige Erweiterungen berücksichtigen zu können
 - → BEST kann in allen Varianten unterstützen



Netzmodell - Auslegungsfall

Durchgeführte Analysen

- Update Abnehmerdaten
 - Gemessener Jahresbedarf
- Integration zusätzlicher Abnehmer
 - Definition Ausbauszenarien
- Variantenrechnungen
 - Ausbauszenarien
 - Veränderung Betriebsparameter
 - VL- / RL-Temperatur
 - Veränderung Rahmenbedingungen
 - Außentemperatur
- Kostenanalyse

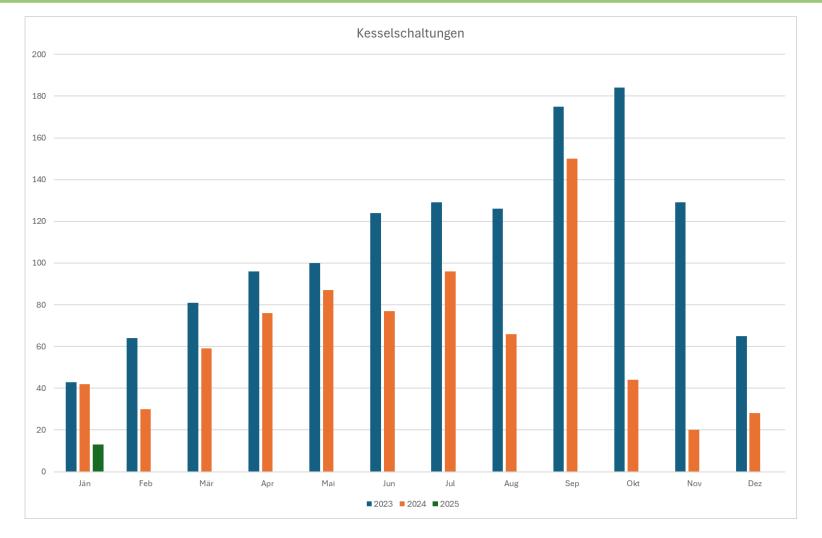
Durchgeführte Analysen

- Analyse des derzeitigen Betriebes in den finalen Zügen
 - Feuerungsbetrieb
 - Puffermanagement
 - Wärmenetz

- Nächste Schritte
 - Verbesserung des regelbasierten Leistungsmanagements
 - Analyse des (und Verbesserung) des Puffermanagements
 - Update des Netzsimulation & Variantenrechnungen (Ausbauszenarien, Änderung von Betriebsparametern)

Ergebnisse

- Reduktion der Rücklauftemperatur um 20 K, dadurch Reduktion der Netzverlust um 15%
- Reduktion des Pumpstroms
- CO2 Einsparung 25 t/a
- Optimierung der Pufferspeicher
- Reduktion der Kesselstarts um 2/3, Verlängerung der Lebensdauer
- Neue Kunden nun möglich, 10 bereits realisiert



Feuerungsbetrieb

- Kesselschaltung stark reduziert
- Reisezeit des Kessel verdreifacht

Conclusio & Ausblick

- Technisch
 - Weiteres Monitoring der RL
 - Weiteres Monitoring Puffermanagement
 - Netzverdichtung an der Trasse
 - Sommerbetrieb
- Wirtschaftlich
 - Ankauf der Anteile der Gemeinde
 - Reduktion der Verwaltungskosten
 - Verschmelzung mit Equans Energie GmbH